Original article

# Synthesis of (4-benzoyl-phenoxy)-acetic acid derivatives and their efficacy as antioxidant agents 

T. Prashanth ${ }^{\text {a }}$, V. Lakshmi Ranganatha ${ }^{\text {a }}$, P. Naveen ${ }^{\text {a }}$, H.D. Gurupadaswamy ${ }^{\text {a }}$, A. Bushra Begum ${ }^{\text {b }}$, Mohammed Al-Ghorbani ${ }^{\text {a }}$, Shaukath Ara Khanum ${ }^{\text {a, * }}$<br>a Department of Chemistry, Yuvaraja College, University of Mysore, Mysore 570 005, Karnataka, India<br>${ }^{\mathrm{b}}$ Department of Chemistry, D. Banumaih's P U Science College, Mysore 570 024, Karnataka, India

## A R T I C L E I N F O

## Article history:

Received 18 June 2013
Accepted 8 September 2013
Available online 15 October 2013

## Keywords:

Benzophenone
Antioxidant activity
Radical scavenging assays
Ascorbic acid


#### Abstract

Aim É background: To study the synthesis of a series of (4-benzoyl-phenoxy)-acetic acid derivatives ( $\mathbf{6 a -} \mathbf{- k}$ ) and to test their antioxidant activity. Methods: The newly synthesized compounds were characterized by IR, ${ }^{1} \mathrm{H}$ NMR and LC-MS analyses. All these compounds were screened for their in vitro antioxidant activity by employing 1,1-diphenyl-1picrylhydrazyl (DPPH), nitric oxide (NO) and hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ radical scavenging assays. Results: Compounds $\mathbf{6 h}$ with chloro substituent in benzoyl ring and $\mathbf{6 f}$ with no substituent in benzoyl ring showed good radical scavenging activity in all the three methods compared to the standard drug ascorbic acid. Whereas compound 6k with methoxy substituent in benzoyl ring showed good antioxidant activity only in hydrogen peroxide method and remaining compounds showed moderate to mild radical scavenging activity. Conclusion: Compounds $\mathbf{6 f}, \mathbf{6 h}$ and $\mathbf{6 i}$ showed excellent activity, almost equivalent to that of standard and the remaining compounds showed moderate to mild scavenging activity.

Copyright © 2013, SciBiolMed.Org and Phcog.Net, Published by Reed Elsevier India Pvt. Ltd. All rights reserved.


## 1. Introduction

The antioxidants that scavenge reactive oxygen species may be of great value in preventing the onset and propagation of oxidative diseases like autoimmune diseases, cardiovascular diseases, neurovascular diseases. ${ }^{1}$ In vivo molecular oxygen is easily converted to reactive free radicals such as superoxide anions and hydroxyl radicals, which are highly reactive substances that react with lipids, proteins and DNA, provoking irreversible changes of their biomolecular structure. ${ }^{2}$ Reactive oxygen species (ROS) are continuously generated in very low amounts by the transfer of one electron to an oxygen molecule during various physiological processes, such as respiration chain, oxygenase and cellular immunization reactions. ${ }^{3,4}$ It is known that ROS play an important role in tumor initiation. ${ }^{5}$ Elevated ROS levels can initiate DNA damage, and might ultimately lead to carcinogenesis. ${ }^{6}$ Compounds capable of either

[^0]scavenging free radicals or suppression of superoxide generation and antioxidant compounds shown cancer chemopreventive effects. ${ }^{7}$ A vast amount of evidence proved that ROS were ascertained to play important multiple roles in tissue damage and loss of function of organs. ${ }^{8}$ These ROS including oxygen free radicals are causative factors in the etiology of degenerative disorders including some hepatopathies and other serious organ damage. ${ }^{9}$ The damage produced by the interaction of free radicals with cellular macromolecules results in cellular senescence and aging. ${ }^{10}$ The scavenging activity has been studied in the process of hydrogen atom transfer to the stable free radical DPPH to compare the activity of compounds under investigation with that of widely known antioxidant parameter. ${ }^{11}$ The investigation of DPPH radical scavenging activity revealed that compounds with electron withdrawing substituents such as Br and Cl displayed very good antioxidant activity. ${ }^{12}$ In general, it was observed that halo substituted and unsubstituted compounds exhibited greater activity when compared to nitro substituted compounds. ${ }^{13}$ Nitrogen-containing benzophenone analogs were synthesized and evaluated for inhibition of TNF- $\alpha$ and IL-6 along with good antioxidant activity. ${ }^{14}$ Benzophenone derivatives displayed a potent free radical scavenging activity and were able to efficiently protect cells against oxidative stress provoked by tert-butylhydroperoxide. ${ }^{15,16}$ By these
literature background we provoked and planned to synthesis these new series of compounds ( $\mathbf{6 a}-\mathbf{k}$ ) and screened for the antioxidant activity.

## 2. Materials and methods

### 2.1. Chemistry

Chemicals were purchased from Sigma Aldrich Chemical Co. TLC was performed on aluminum-backed silica plates and visualized by UV-light. Melting points were determined on a Thomas Hoover capillary melting point apparatus with a digital thermometer. IR spectra were recorded on FT-IR Shimadzu 8300 spectrophotometer, ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 MHz NMR spectrophotometer in DMSO-d6 and the chemical shifts were recorded in parts per million down field from tetramethylsilane. Mass spectra were obtained with a VG70-70H spectrophotometer and important fragments are given with the relative intensities in brackets. Results of elemental analysis are within $0.4 \%$ of the calculated value.
2.1.1. General procedure for the preparation of phenyl benzoates (3a-k)

Substituted benzoates ( $\mathbf{3 a}-\mathbf{k}$ ) were synthesized by benzoylation of substituted phenols ( $\mathbf{1 a - b}$ ) with corresponding benzoyl chlorides ( $\mathbf{2 a}-\mathbf{g}, 1: 1$ ) using $10 \%$ sodium hydroxide solution. The reaction mass was stirred for $2-3 \mathrm{~h}$ at $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC using 4:1 n-hexane: ethyl acetate solvent mixture. After completion of the reaction the oily product was extracted with ether layer. Ether layer was washed with $10 \%$ sodium hydroxide solution ( $3 \times 50 \mathrm{ml}$ ) followed by water ( $3 \times 30 \mathrm{ml}$ ) and then dried over anhydrous sodium sulfate and evaporated the solvent under pressure to afford desired compounds ( $\mathbf{3 a - k}$ ). Compounds ( $\mathbf{3 b} \mathbf{b}$ ) were synthesized analogously starting with $(\mathbf{1 a}-\mathbf{b})$ and $(\mathbf{2 b}-\mathbf{f})$ respectively. Compound $\mathbf{3 a}$ is taken as a representative example to explain characterization data.

3a: Yield $90 \%$. IR (Neat): $1715 \mathrm{~cm}^{-1}(\mathrm{C}=0) .{ }^{1} \mathrm{H}$ NMR (DMSO-d6): $\delta 7.3-7.8$ ( $\mathrm{m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ). LC-MS m/z 260.91 (M + 1). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2}$ : C, 59.22; H, 3.70. Found: C, 59.18; H, 3.76\%.

### 2.1.2. General procedure for the preparation of 4-hydroxy benzophenones ( $\mathbf{4 a}-\boldsymbol{k}$ )

Substituted 4-hydroxy-diarylmethanone commonly known as hydroxy benzophenones ( $\mathbf{4 a}-\mathbf{k}$ ) were synthesized by Fries rearrangement. Compounds ( $\mathbf{3 a}-\mathbf{k}, 0.001 \mathrm{~mol}$ ) were treated with anhydrous aluminum chloride ( 0.002 mol ) as a catalyst at $150-$ $170^{\circ} \mathrm{C}$ under without solvent condition for about $2-3 \mathrm{~h}$. Then the reaction mixture was cooled to room temperature and quenched with 6 N HCl in the presence of ice water. The reaction mixture was stirred for about $2-3 \mathrm{~h}$, filtered the solid and recrystallized it with methanol to obtain desired compounds ( $\mathbf{4 a}-\mathbf{k}$ ). Compounds ( $\mathbf{4 b}$ $\mathbf{k}$ ) were synthesized analogously starting with ( $\mathbf{3 b}-\mathbf{k}$ ) respectively. Compound 4a is taken as a representative example to explain characterization data.

4a: Yield $72 \%$. mp $125-128{ }^{\circ} \mathrm{C}$. IR: $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) 1640(\mathrm{C}=\mathrm{O})$, 3510-3600 (O-H); ${ }^{1}$ H NMR (DMSO-d6): $\delta 6.71-7.80(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 4.50 (bs, 1H, -OH). LC-MS m/z 276.9 (M+1). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrO}_{2}$ : C,55.92; H, 3.70. Found: C, 56.18 ; H, 3.69\%.
2.1.3. General procedure for the preparation of (4-benzoyl-2-bromo-phenoxy)-acetic acid ethyl ester (5a-k)

Compounds ( $\mathbf{5 a} \mathbf{- k}$ ) were obtained by refluxing a mixture of compounds ( $\mathbf{4 a - k}$ ) $(0.013 \mathrm{~mol})$ and ethyl chloroacetate ( 0.026 mol ) in dry acetone ( 50 ml ) and anhydrous potassium carbonate $(0.019 \mathrm{~mol})$ for $8-9 \mathrm{~h}$. The reaction mixture was cooled and solvent
was removed by distillation. The residual mass was triturated with cold water to remove potassium carbonate and extracted with ether $(3 \times 50 \mathrm{ml})$. The ether layer was washed with $10 \%$ sodium hydroxide solution ( $3 \times 50 \mathrm{ml}$ ) followed by water ( $3 \times 30 \mathrm{ml}$ ) and then dried over anhydrous sodium sulfate and evaporated to dryness to obtain crude solid, which, on recrystallization with ethanol afforded desired compounds ( $\mathbf{5 a}-\mathbf{k}$ ). Compounds ( $\mathbf{5 b}-\mathbf{k}$ ) were synthesized analogously starting with $\mathbf{5 b}-\mathbf{n}$, respectively. Compound $5 \mathbf{a}$ is taken as a representative example to explain characterization data.

5a: Yield $90 \%$ mp $49-52{ }^{\circ} \mathrm{C}$. IR (Nujol, $\mathrm{cm}^{-1}$ ): 1664 ( $\mathrm{C}=\mathrm{O}$ ), 1760 (ester, $\mathrm{C}=\mathrm{O}$ ). ${ }^{1} \mathrm{H}$ NMR (DMSO-d6): $\delta 1.2\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ of ester), 4.1 ( q , $2 \mathrm{H}, \mathrm{CH}_{2}$ of ester), $4.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.9-7.7(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) . \mathrm{LC}-\mathrm{MS}$ $\mathrm{m} / \mathrm{z} 299(\mathrm{M}+1)$. Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{4}: \mathrm{C}, 56.47$; H, 4.04. Found: C, 56.26; H, 4.12\%.

### 2.1.4. General procedure for the preparation of (4-benzoyl-2-bromo-phenoxy)-acetic acid ( $\mathbf{6 a - k}$ )

Compounds ( $\mathbf{5 a}-\mathbf{k}$ ) $(6.0 \mathrm{mmol})$ was dissolved in ethanol $(15 \mathrm{ml})$ and treated with a solution of sodium hydroxide ( 15 mmol ) in water ( 5 ml ). The reaction mixture was refluxed for $5-6 \mathrm{~h}$, cooled, and acidified with 1 N hydrochloric acid. The precipitate was filtered, washed with water and finally crystallized from methanol to afford desired compounds ( $\mathbf{6 a -}-\mathbf{k}$ ) with good yield. Compounds ( $\mathbf{6 b}-\mathbf{k}$ ) were synthesized analogously starting with ( $\mathbf{5 b} \mathbf{-} \mathbf{n}$ ) respectively. The characterization data of the compounds ( $\mathbf{6 a - k}$ ).

6a: Yield $75 \%$. mp $130-132{ }^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=\mathrm{O})$, 1730 (acid $\mathrm{C}=\mathrm{O}$ ), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 4.86$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$ ), 6.9-7.7 (m, 8H, Ar-H), $9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) . \mathrm{LC}-\mathrm{MS} \mathrm{m} / \mathrm{z}$ $334.9(M+1)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}_{4}$ : C, 53.71; H, 3.30. Found: C, 53.68; H, 3.33.26\%.

6b: Yield $70 \% \mathrm{mp} 125-128^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=0)$, 1730 (acid C=O), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.34$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), $4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.8-7.7(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.5(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{COOH})$. LC - MS $\mathrm{m} / \mathrm{z} 349(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrO}_{4}$ : C, 55.71; H, 3.30. Found: C, 55.68; H, 3.33.26\%.

6c: Yield $73 \%$. mp $160-162^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=0)$, $1730($ acid $\mathrm{C}=0), 3400-3500\left(\right.$ acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 4.86$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$ ), 6.7-7.7 (m, 7H, Ar-H), $9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) . \mathrm{LC}-\mathrm{MS} \mathrm{m} / \mathrm{z}$ $370.9(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrClO}_{4}$ : C, 48.71; H, 2.30. Found: C, 48.68; H, 2.33.26\%.

6d: Yield 78\%. mp 178-180 ${ }^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=0)$, $1730($ acid $\mathrm{C}=0), 3400-3500\left(\right.$ acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 4.86$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$ ), 6.7-7.8 (m, 7H, Ar-H), $9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$. LC-MS m/z $412.9(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}: \mathrm{C}, 43.71 ; \mathrm{H}, 2.30$. Found: C, 43.68; H, 2.33.26\%.

6e: Yield $75 \%$. mp $210-212{ }^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=0)$, 1730 (acid $\mathrm{C}=0$ ), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 4.88$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2}$ ), $6.9-7.7(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH}) . \mathrm{LC}-\mathrm{MS} \mathrm{m} / \mathrm{z} 353$ $(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrFO}_{4}: \mathrm{C}, 51.71 ; \mathrm{H}, 2.30$. Found: C , 51.68; H, 2.33.26\%.

6f: Yield $80 \%$. mp $121-125^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=0)$, $1730(\operatorname{acid} \mathrm{C}=\mathrm{O}), 3400-3500(\operatorname{acid} \mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.34$ (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.2-7.7(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$. LC-MS m/z $285.2(M+1)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 71.71 ; \mathrm{H}$, 5.30. Found: C, 71.68; H, 5.33.26\%.

6g: Yield $85 \%$. mp $178-180^{\circ} \mathrm{C}$. FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ : $1675(\mathrm{C}=\mathrm{O})$, 1730 (acid $\mathrm{C}=0$ ), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.34$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}\right), 4.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.2-7.6$ (m, 6H, Ar-H), $9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$. LC-MS m/z $299(M+1)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$ : C, 72.71; H, 6.30. Found: C, 72.68; H, 6.33.26\%.

6h: Yield $88 \%$. mp $165-169^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=0)$, 1730 (acid $\mathrm{C}=0$ ), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.34$ (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 4.9\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.2-7.6(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$.

Table 1
In vitro antioxidant activity of compounds $\mathbf{6 a -} \mathbf{k}$ in DPPH method.

| Compounds | Concentration ( $\mu \mathrm{g} / \mathrm{ml}$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 25 | 50 | 75 | 100 | $\mathrm{IC}_{50}$ |
| 6a | $51.87 \pm 1.70$ | $57.95 \pm 1.00$ | $60.68 \pm 0.90$ | $66.99 \pm 1.58$ | $22.83 \pm 1.45$ |
| 6b | $68.77 \pm 1.04$ | $70.79 \pm 0.85$ | $75.95 \pm 1.30$ | $80.58 \pm 1.03$ | $17.89 \pm 1.05$ |
| 6c | $63.98 \pm 1.42$ | $67.89 \pm 1.19$ | $72.92 \pm 1.54$ | $76.78 \pm 0.93$ | $18.68 \pm 1.11$ |
| 6d | $58.98 \pm 1.15$ | $63.85 \pm 1.22$ | $67.89 \pm 0.86$ | $71.86 \pm 0.93$ | $19.99 \pm 0.76$ |
| 6 e | $67.95 \pm 1.24$ | $71.97 \pm 1.39$ | $73.81 \pm 1.56$ | $78.67 \pm 1.02$ | $17.77 \pm 1.08$ |
| 6 f | $75.85 \pm 0.26$ | $78.85 \pm 0.47$ | $82.92 \pm 0.59$ | $84.89 \pm 0.76$ | $15.78 \pm 0.26$ |
| 6 g | $63.86 \pm 1.03$ | $68.86 \pm 1.38$ | $72.88 \pm 0.80$ | $76.69 \pm 1.61$ | $18.57 \pm 1.05$ |
| 6h | $72.94 \pm 0.17$ | $76.78 \pm 0.43$ | $78.95 \pm 0.44$ | $82.79 \pm 0.68$ | $15.67 \pm 0.58$ |
| 61 | $69.84 \pm 0.24$ | $73.85 \pm 0.41$ | $76.69 \pm 0.63$ | $80.56 \pm 0.68$ | $16.85 \pm 0.59$ |
| 6j | $62.56 \pm 0.69$ | $66.74 \pm 1.30$ | $70.69 \pm 1.27$ | $75.77 \pm 1.32$ | $18.78 \pm 1.21$ |
| 6k | $71.83 \pm 0.34$ | $74.74 \pm 0.58$ | $77.68 \pm 0.68$ | $82.84 \pm 0.84$ | $16.78 \pm 0.50$ |
| Ascorbic acid | $81.98 \pm 0.11$ | $82.99 \pm 0.37$ | $84.88 \pm 0.43$ | $86.79 \pm 0.52$ | $14.98 \pm 0.43$ |
| Blank | $-$ | - | - | $-$ | $-$ |

${ }^{(-)}$Showed no scavenging activity. Values were the means of three replicates $\pm$SD.

LC-MS m/z $319.1(M+1)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClO}_{4}: \mathrm{C}, 64.71$; H , 4.30. Found: C, 64.68; H, 4.33.26\%.

6i: Yield 74\%. mp 140-145 ${ }^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 1675 ( $\mathrm{C}=0$ ), 1730 (acid C=O), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.34$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$ ), 4.86 ( $\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2}$ ), $7.2-7.7(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.5(\mathrm{~s}, 1 \mathrm{H}$, COOH ). LC-MS m/z 363 (M + 1). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{4}: \mathrm{C}$, 56.71; H, 4.30. Found: C, 56.68; H, 4.33.26\%.

6j: Yield 69\%. mp 218-220 ${ }^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 1675 ( $\mathrm{C}=\mathrm{O}$ ), 1730 (acid $\mathrm{C}=\mathrm{O}$ ), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.34$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$ ), 4.86 (s, 2H, OCH $)$, $7.2-7.7$ (m, 6H, Ar-H), $9.5(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{COOH})$. $\mathrm{LC}-\mathrm{MS} \mathrm{m} / \mathrm{z} 303.1(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FO}_{4}$ : C , 67.71; H, 6.30. Found: C, 67.68; H, 6.33.26\%.

6k: Yield $75 \%$. mp $201-204^{\circ} \mathrm{C}$. FT-IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $1675(\mathrm{C}=\mathrm{O})$, 1730 (acid C=O), 3400-3500 (acid OH). ${ }^{1} \mathrm{H}$ NMR (DMSO): $\delta 2.34$ (s, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 6.7-7.7(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-$ H), $9.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOH})$. LC $-\mathrm{MS} \mathrm{m} / \mathrm{z} 315.1(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}$ : C, 68.71; H, 5.30. Found: C, 68.61; H, 5.33.26\%.

### 2.2. Pharmacological screening

### 2.2.1. Antioxidant screening (in vitro)

Compounds ( $\mathbf{4 a}-\mathbf{k}$ ) were tested for in vitro antioxidant property by 1,1-diphenylpicrylhydrazyl (DPPH), ${ }^{17,18}$ nitric oxide (NO) ${ }^{19,20}$ and hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)^{21}$ methods which were summarized in Tables 1-3 respectively.

### 2.2.2. DPPH radical scavenging activity

The hydrogen atom or electron donating ability of the compounds was measured from the bleaching of the purple colored
methanol solution of DPPH. The spectrophotometric assay uses the stable radical DPPH as a reagent. 1 ml of various concentrations of the test compounds ( $25,50,75,100$ and $100 \mu \mathrm{~g} / \mathrm{ml}$ ) in methanol was added to 4 ml of $0.004 \%$ ( $\mathrm{w} / \mathrm{v}$ ) methanol solution of DPPH. After a 30 min incubation period at room temperature, the absorbance was read against blank at 517 nm . The percent of inhibition (I\%) of free radical production from DPPH was calculated by the following equation
$\%$ of scavenging $=\left[\left(A_{\text {control }}-A_{\text {sample }}\right) / A_{\text {blank }}\right] \times 100$
where $\mathrm{A}_{\text {control }}$ is the absorbance of the control reaction (containing all reagents except the test compound) and $\mathrm{A}_{\text {sample }}$ is the absorbance of the test compound. Tests were carried at in triplicate.

### 2.2.3. Nitric oxide (NO) scavenging activity

Nitric oxide scavenging activity was measured by slightly modified methods of Green et al and Marcocci et al Nitric oxide radicals (NO) were generated from sodium nitroprusside. 1 ml of sodium nitroprusside ( 10 mM ) and 1.5 ml of phosphate buffer saline ( $0.2 \mathrm{M}, \mathrm{pH} 7.4$ ) were added to different concentrations ( 25 , 50,75 and $100 \mu \mathrm{~g} / \mathrm{ml}$ ) of the test compounds and incubated for 150 min at $25^{\circ} \mathrm{C}$ and 1 ml of the reaction mixture was treated with 1 ml of Griess reagent ( $1 \%$ sulfanilamide, $2 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and $0.1 \%$ naphthylethylenediamine dihydrochloride). The absorbance of the chromatophore was measured at 546 nm . Nitric oxide scavenging activity was calculated using Eq. (1).

Table 2
The in vitro antioxidant activity of compounds $\mathbf{6 a - k}$ in nitric oxide (NO) method.

| Compounds | Concentration ( $\mu \mathrm{g} / \mathrm{ml}$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 25 | 50 | 75 | 100 | $\mathrm{IC}_{50}$ |
| 6 a | $59.67 \pm 1.50$ | $62.78 \pm 1.19$ | $66.83 \pm 1.29$ | $71.56 \pm 0.69$ | $19.97 \pm 0.92$ |
| 6b | $70.98 \pm 0.86$ | $73.69 \pm 1.05$ | $76.79 \pm 1.39$ | $81.64 \pm 1.25$ | $16.86 \pm 0.93$ |
| 6c | $67.96 \pm 0.88$ | $69.89 \pm 1.37$ | $73.95 \pm 0.93$ | $78.96 \pm 1.19$ | $17.89 \pm 1.03$ |
| 6d | $61.79 \pm 1.39$ | $65.74 \pm 1.54$ | $69.46 \pm 0.76$ | $72.25 \pm 1.05$ | $19.68 \pm 0.95$ |
| 6 e | $71.48 \pm 0.83$ | $73.78 \pm 0.92$ | $77.82 \pm 1.04$ | $81.96 \pm 1.39$ | $16.88 \pm 0.54$ |
| $6 f$ | $77.58 \pm 0.26$ | $82.84 \pm 0.45$ | $83.73 \pm 0.59$ | $85.79 \pm 0.78$ | $14.62 \pm 0.75$ |
| 6 g | $62.83 \pm 1.30$ | $70.84 \pm 1.22$ | $75.79 \pm 1.02$ | $77.41 \pm 0.77$ | $18.72 \pm 1.10$ |
| 6h | $74.75 \pm 0.24$ | $78.92 \pm 0.35$ | $81.71 \pm 0.55$ | $84.82 \pm 0.70$ | $15.86 \pm 0.54$ |
| 61 | $70.63 \pm 0.15$ | $75.82 \pm 0.33$ | $78.93 \pm 0.52$ | $82.85 \pm 0.67$ | $16.84 \pm 0.90$ |
| 6 j | $63.85 \pm 1.16$ | $68.95 \pm 1.55$ | $73.82 \pm 1.39$ | $78.92 \pm 0.69$ | $18.77 \pm 1.21$ |
| 6k | $72.86 \pm 0.24$ | $77.83 \pm 0.43$ | $81.79 \pm 0.60$ | $83.68 \pm 0.77$ | $16.67 \pm 0.89$ |
| Ascorbic acid | $83.63 \pm 0.17$ | $84.65 \pm 0.35$ | $87.54 \pm 0.51$ | $89.97 \pm 0.68$ | $13.97 \pm 0.54$ |
| Blank | - | - | $-$ | - | - |

[^1]Table 3
The in vitro antioxidant activity of compounds $\mathbf{6 a - k}$ in hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ method.

| Compounds | Concentration ( $\mu \mathrm{g} / \mathrm{ml}$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 25 | 50 | 75 | 100 | $\mathrm{IC}_{50}$ |
| 6a | $50.84 \pm 1.14$ | $53.78 \pm 0.84$ | $57.83 \pm 0.95$ | $62.91 \pm 0.61$ | $23.79 \pm 1.02$ |
| 6b | $60.63 \pm 0.84$ | $62.61 \pm 1.56$ | $67.83 \pm 1.05$ | $70.84 \pm 1.35$ | $19.67 \pm 1.21$ |
| 6c | $57.59 \pm 1.10$ | $61.69 \pm 1.15$ | $64.47 \pm 1.45$ | $68.63 \pm 1.53$ | $20.86 \pm 1.05$ |
| 6d | $52.88 \pm 0.87$ | $55.76 \pm 1.37$ | $58.74 \pm 0.76$ | $63.69 \pm 1.03$ | $22.79 \pm 0.40$ |
| 6 e | $59.76 \pm 1.04$ | $62.69 \pm 1.25$ | $66.73 \pm 1.55$ | $69.48 \pm 0.81$ | $19.97 \pm 0.50$ |
| $6 f$ | $67.84 \pm 0.26$ | $70.58 \pm 0.43$ | $73.76 \pm 0.59$ | $78.74 \pm 0.80$ | $17.69 \pm 0.93$ |
| 6 g | $53.66 \pm 1.17$ | $57.73 \pm 0.86$ | $61.81 \pm 1.47$ | $65.73 \pm 0.80$ | $21.65 \pm 0.67$ |
| 6h | $62.63 \pm 0.28$ | $64.84 \pm 0.44$ | $67.52 \pm 0.63$ | $71.74 \pm 0.76$ | $18.93 \pm 1.24$ |
| 61 | $63.83 \pm 0.25$ | $66.76 \pm 0.62$ | $68.68 \pm 0.67$ | $71.75 \pm 0.78$ | $18.94 \pm 0.24$ |
| 6j | $60.76 \pm 1.30$ | $63.83 \pm 1.16$ | $67.84 \pm 1.05$ | $70.66 \pm 1.55$ | $19.76 \pm 0.76$ |
| 6k | $65.84 \pm 1.10$ | $68.68 \pm 1.29$ | $70.88 \pm 0.58$ | $73.85 \pm 0.69$ | $17.64 \pm 0.58$ |
| Ascorbic acid | $75.96 \pm 0.17$ | $77.75 \pm 0.32$ | $81.48 \pm 0.60$ | $85.62 \pm 0.70$ | $15.73 \pm 0.25$ |
| Blank | - | - | $-$ | $-$ | - |

[^2]

Scheme 1. Synthesis of (4-benzoyl-phenoxy)-acetic acid derivatives ( $\mathbf{6 a - k}$ ).

### 2.2.4. Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ scavenging activity

The $\mathrm{H}_{2} \mathrm{O}_{2}$ scavenging activity of the test compound was determined according to the method of Ruch et al A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ $(40 \mu \mathrm{M})$ was prepared in phosphate buffer ( pH 7.4 ). $25,50,75$ and $100 \mu \mathrm{~g} / \mathrm{ml}$ concentrations of the test compounds in 3.4 ml phosphate buffer were added to $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ( $0.6 \mathrm{ml}, 40 \mu \mathrm{M}$ ). The absorbance value of the reaction mixture was recorded at 230 nm . The percentage of scavenging activity of $\mathrm{H}_{2} \mathrm{O}_{2}$ was calculated using Eq. (1).

## 3. Result and discussion

Series of (4-benzoyl-2-methyl-phenyl)-acetic acid derivatives $(\mathbf{6 a}-\mathbf{k})$ were prepared by reported procedure ${ }^{22}$ with different substituents in good yields. Compounds ( $\mathbf{4 a - k}$ ) were tested for in vitro antioxidant property by $\mathrm{DPPH}^{16,17} \mathrm{NO}^{18,19}$ and $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{20}$ methods which were summarized in Tables $1-3$ respectively. Compounds $\mathbf{6 h}$ with chloro substituent at benzoyl ring and $\mathbf{6 f}$ with no substituent at benzoyl ring showed good radical scavenging activity in all three methods compared to the standard drug ascorbic acid. Whereas compound 6k with methoxy substituent in benzoyl ring showed good antioxidant activity only in $\mathrm{H}_{2} \mathrm{O}_{2}$ method. Whereas the one more compound $6 \mathbf{i}$ with bromo substituent displayed moderate activity in all the three methods. The $\mathrm{IC}_{50}$ value of the standard ascorbic acid was found to be $14.98 \pm 0.43,13.97 \pm 0.54$ and $15.73 \pm 0.25$ in DPPH, NO and $\mathrm{H}_{2} \mathrm{O}_{2}$ methods respectively, whereas the $\mathrm{IC}_{50}$ values of the compounds $\mathbf{6 f}$ and 6 h were found to be $15.78 \pm 0.26$ and $15.67 \pm 0.58$ in DPPH , $14.62 \pm 0.75$ and $15.86 \pm 0.54$ in NO and17.69 $\pm 0.93$ and $18.93 \pm 1.24$ in $\mathrm{H}_{2} \mathrm{O}_{2}$. $\mathrm{IC}_{50}$ value for compound $\mathbf{6 k}$ is $17.64 \pm 0.58$. Further Tables 1-3 indicate that remaining compounds showed moderate to mild radical scavenging activity in DPPH, NO and $\mathrm{H}_{2} \mathrm{O}_{2}$ methods.

## 4. Conclusion

In conclusion, a new series of (4-benzoyl-phenyl)-acetic acid derivatives $(\mathbf{6 a}-\mathbf{k})$ were prepared by reported procedure ${ }^{21}$ with different substituents in good yields and studied for their antioxidant activity. It was observed that halo substituted and unsubstituted compounds $\mathbf{6 f}$, $\mathbf{6 h}$ and $\mathbf{6 k}$ exhibited greater activity in which same conclusion was expressed by (Kotaiah et al, 2012) for pyrimidine and oxadiazole derivatives. Compound $6 \mathbf{i}$ displayed
moderately good activity for the same reason. The investigation of antioxidant screening data reveals that among all the compounds screened, compounds $\mathbf{6 f}$, $\mathbf{6 h}$ and $\mathbf{6 i}$ showed excellent, almost equivalent to that of standard and the remaining compounds showed moderate to mild scavenging activity. Scheme 1

## Acknowledgments

Shaukath Ara Khanum and Prashanth T gratefully acknowledge the financial support provided by the UGC, New Delhi, under the Major Research Project Scheme [F.39/737/2010 (SR)]. Lakshmi Ranganatha V, acknowledges the financial support provided by the Department of Science and Technology, New Delhi, under INSPIRE-Fellowship scheme [IF110555]. And all authors thankful to the principal, Yuvaraja's College, University of Mysore, Mysore for their support and encouragement throughout the execution of this work.

## References

1. Eberlein K, Scheibner MA, Black KE, Willet W. Science. 1994;264:532-537.
2. Halliwell B. Free Radic Res. 1990;9:1-32.
3. Dröge W. Physiol Rev. 2002;82:47-95.
4. Filomeni G, Rotilio G, Ciriolo MR. Cell Death Differ. 2006;12:1555-1563.
5. Gerhauser C, Klimo K, Heiss E, et al. Mutat Res. 2003;523-524:163-172.
6. Halliwell B, Zhao K, Whiteman M. Free Radic Res. 2000;33:819-830.
7. Lippman SM, Benner SE, Hong WK. J Clin Oncol. 1994;12:851-873.
8. Zheng RL, Huang ZY. Reactive oxygen species. In: Zheng RL, Huang ZY, eds. Free Radical in Medical and Agricultural Science. Beijing: China Higher Education Press and Springer Press; 2001:17-27.
9. Ames BN, Shigenaga MK, Hagen TM. Proc Natl Acad Sci. 1993;90:7915-7922.
10. Wickens AP. Respir Physiol. 2001;128:379-391.
11. Sadiq SM, khanum SA, Rajesha J. Free Rad Antiox. 2011;1:31-38.
12. Kenchappa R, Yadav DB, Chandrashekar A, Sandeep T, Manjunatha KS, Aruna SM. Arabian J Chem. 2013. In press corrected proof.
13. Kotaiah Y, Harikrishna N, Nagaraju K, Venkata RC. Eur J Med Chem. 2012;58: 340-345.
14. Babasaheb PB, Sachin AP, Jalinder VT, et al. Phytother Res. 2000;14:323-328.
15. Tzvetomira T, Mariana G, Ognyan P, Margarita K, Denyse B. Eur J Med Chem. 2009;44:2724-2730.
16. Imad AE, Fawzia AB, Wissame M, Mohammed G. Phcog J. 2013;5:108-112.
17. Burits M, Bucar F. Phytother Res. 2000;14:323-328.
18. Cuendet M, Hostettmann K, Potterat O. Helv Chim Acta. 1997;80:1144-1152.
19. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JKSR. Anal Biochem. 1982;126:131-136.
20. Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. Biochem Biophys Res Commun. 1994;201:748-755.
21. Ruch RJ, Cheng SJ, Klaunig JE. Carcinogenesis. 1989;10:1003-1008.
22. Gurupadaswamy HD, Girish V, Kavitha CV, Sathees CR, Khanum SA. Eur J Med Chem. 2013;63:536-543

[^0]:    Abbreviations: ROS, reactive oxygen species; DPPH, 1,1-diphenylpicrylhydrazyl; NO, nitric oxide; $\mathrm{H}_{2} \mathrm{O}_{2}$, hydrogen peroxide; nm, nanometer; mp, melting point; Calcd, calculated.

    * Corresponding author. Tel.: +91 99018 88755; fax: +918212419239.

    E-mail address: shaukathara@yahoo.co.in (S.A. Khanum).

[^1]:    ${ }^{(-)}$Showed no scavenging activity. Values were the means of three replicates $\pm$SD.

[^2]:    ${ }^{(-)}$Showed no scavenging activity. Values were the means of three replicates $\pm$SD.

