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INTRODUCTION
NO is a short-lived gaseous free radical generated by 
the oxidation of L-arginine to L-citrulline in a reaction  
catalyzed by nitric oxide synthase (NOS). Three distinct  
genes code for the three isoforms of NOS: neuronal 
NOS (nNOS or NOS-1), inducible NOS (iNOS or 
NOS-2) and endothelial NOS (eNOS or NOS-3).1 The  
effect of NO has been extensively studied in remodeling  
of the vasculature. In fact, Cudmore et al. demonstrated  
that the induction of angiogenesis by VEGF-E in 
human umbilical vein endothelial cells requires the 
activation of endothelial iNOS, and that the angiogen-
esis-promoting role of NO is independent of cGMP.2 
It has also been shown, by Pyriochou et al. to promote 
angiogenesis independently of cGMP in rat aortic 
endothelial cells.3 
Heterotrimeric GTP-binding proteins are composed 
of α, β, and γ subunits convert extracellular receptor 
mediated signals into intracellular signals.4 Activation 
of G-protein coupled receptors leads to the replace-
ment of GDP by GTP in the alpha subunit causing, 
therefore, the dissociation of Gα from the other two  
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subunits.5 The activated Gα and Gβγ subunits are 
involved in the regulation of the activity of various 
effectors like adenylatecyclases, phosphodiesterases,  
phospholipases, ion channels, and Mitogen Activated  
Protein Kinases (MAPKs).6 The implication of  
Gi-proteins in proliferative events has been thoroughly  
studied. Li et al. showed that the enhanced levels 
of Gi-proteins in SHR are implicated in ANG II  
induced hyper proliferation in A-10 VSMCs.7 Sandoval  
et al also reported similar results when they noted 
that the ANGII- induced increase in oxidative stress  
trans activates Epidermal Growth Factor Receptor,  
which, through downstream Mitogen Activated  
Protein Kinase signaling contributes to the enhanced 
expression of Gi-proteins and results in proliferation 
of A-10 VSMCs.8,9

It has been previously shown that NO modulates 
Gi protein expression and Adenylyl Cyclase sig-
naling in VSMCs. Bassil et al. showed that treat-
ment of A-10 SMC with an NO donor resulted in 
a decrease of Giα-2 and Giα-3 levels while having 
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Cell Count
Cell viability and cell counting was assessed with the trypan blue exclusion 
technique.17

Western Blots
Western blotting for Gi, PPAR-γ, and pPPAR-γ was performed as previ-
ously described.4 After the SDS-PAGE, the separated proteins were elec-
trophoretically transferred to a nitrocellulose membrane with a semidry 
transblot apparatus at 15 V for 45 min. The proteins on the membrane 
were stained with Rouge Ponceau S. The membranes were then blocked 
with 5% milk, washed twice in  phosphate-buffered saline  (PBS), and 
incubated in  PBS  containing 5%  milk. The blots were then incubated  
with antibodies: Giα-2, Giα-3,PPAR-γ and pPPAR-γ anti-rabbit antibodies,  
and  GAPDH anti-mouse anti-body against GAPDH in  PBS  containing  
5% dehydrated milk and 0.2% Tween 20 at 4°C for overnight. The anti-
body–antigen complexes were detected by incubating the membranes 
with goat anti-rabbit IgG, and goat anti-mouse IgG conjugated with 
horseradish  peroxidase for 1  h at room temperature. All antibodies 
were purchased from Santa-Cruz,Santa Cruz, USA . The blots were then 
washed three times with PBS before reaction with enhanced-chemilu-
minescence Western-blotting detection reagents purchased from GE 
Amersham, Europe. The autoradiograms were quantified by densitomet-
ricscanning using a gel image reader. 

Cell proliferation assay
CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay by  
Promega was used to examine the proliferation of cells following incu-
bation with proliferative and anti-proliferative agents.18 Subconfluent 
primary VSMC were plated in 96-well plates for 24 h and were serum  
deprived for 24 h to induce cell quiescence. The cells were then incubated  
with ANG II (10-7 M) to induce proliferation.19 10μL per well of Cell 
Proliferation Assay (MTS)/phenazine methosulfate (PMS) solution were  
added, and the plates were incubated for 4 hours at 37°C in a humidified,  
5% CO2 atmosphere. To measure the amount of soluble formazan  
produced by cellular reduction of the MTS, the absorbance at 490nm 
was recorded using an ELISA plate reader. The anti-proliferative effect 
of NO was assessed by incubation with SNP (0.5 mmol/L)for 2 hrs, and 
the role of PPAR-γ in the anti-proliferative effects of NO were examined  
by addition of the specific inhibitors GW9962 (20 μmol//L) and  
(30 μmol//L).20

Statistical Analysis
Values were reported as means ± SE.GraphPad Prism 5 was used for  
statistical analysis. Comparisons between groups was made using one 
way ANOVA in conjunction with the Newman-Keuls multiple comparison 
test .27 
Differences between groups were considered statistically significant at 
P < 0.05.

RESULTS
Effect of treatments with SNP and GW9962 on Giα-2:
VSMCs (Figure 1) and A-10 cells (Figure 2) were treated with SNP (500 µM)  
and/or GW9962 (20 µM and 30 µM). Western blotting experiments 
showed that these treatments uniformly decreased the levels of expression  
of Giα-2 in VSMCs and A-10 cells compared to control cells (CTL) or 
those treated with the vehicle DMSO (same volume used to treat cells 
with GW9962). Treatment with SNP decreased the levels of Giα-2 by  
44.3% in VSMCs and 57.6% in A-10 cells. Treatment with GW9962  
(20 µM and 30 µM) decreased the levels of  expression of Giα-2 by 49% 
and 53.33% respectively in VSMCs and 62.33% and 58.66% in A-10 cells. 
The decreased levels of Giα-2 showed no statistical significance between 

no effect on the expression levels of Gsα proteins. The decreased 
level of Giα proteins was reflected in a reduction in both receptor  
dependent and receptor independent Gi function.10 In addition Bassil  
et al. also showed that the effects of nitric oxide on Giα were mediated by 
the highly reactive oxygen species ONOO- and not via cGMP dependent 
pathway.11

PPAR-γ has also been implicated in the protection of the vasculature by 
preventing hypertensive remodeling. Cipolla et.al has shown the effective-
ness and clinical relevance of PPAR-γ in improving vascular function.  
Female Sprague Dawley rats were treated with N6-nitro-L-arginine 
methyl ester (L-NAME), a nitric oxide synthase inhibitor or L-NAME 
and PPAR-γ activator rosiglitazone. The hypertrophic remodeling and 
the enhanced myogenic activity caused by L-NAME were reversed by 
rosiglitazone without having any effect on blood pressure.12 
Recent research suggested that NO acts on PPAR-γ via protein nitration, 
which is a marker of ONOO- formation in the presence of NO. In fact, 
the NO- donating moiety of the non-steroidal anti-inflammatory drug 
NCX 2216, as shown by Bernardo et al., is responsible for PPAR-γ nitration 
and activation in microglia cells.13

Nitration of tyrosine residues has also been demonstrated as an important 
regulator of PPAR-γ activity. Shibuya et al. proved that ONOO- induced 
nitration of tyrosine residues on PPAR-γ during inflammation in RAW 
265 a macrophage-like cell line.14

PPAR-γ signaling has also been extensively associated with G-proteins. 
A study by Knowles et al. showed that niacin which possesses an anti-
lipolytic effect involving inhibitory G-protein signaling induces PPAR-γ 
expression and transcriptional activation in macrophages via HM74 and 
HM74a induction of prostaglandin synthesis pathways.15

On another level, a study by Jeninga et al. indicates that PPAR-γ is 
involved in the regulation of the anti-lipolytic human G-protein-coupled 
receptor 81 which regularly couples to Gi members of the G-protein 
family.16 
These studies suggest a possible relation between NO, PPAR-γ, and Gi 
in VSMCs, and the possibility that the anti-proliferative effect of NO 
might be due to the implication of PPAR-γ activity and associated with 
G-protein signaling.

MATERIALS AND METHODS
Cell Culture 
Primary VSMCs from  rat  aorta  and A-10-SMCs were cultured as 
described previously.17 Cells  were plated in 7.5 cm2 flasks and incubated 
at 37°C in 95% air and 5% CO2 humidified atmosphere in Dulbecco›s 
modified Eagle›s medium (DMEM) (with glucose,  L-glutamine, 
and  sodium bicarbonate) containing 1% antibiotics and 10% heat-
inactivated fetal Bovine serum (FBS) from Gibco, Invitrogen. The cells 
were passaged upon reaching confluence with 0.5% trypsin containing  
0.2% EDTA and used between passages 5 and 15 as described previously.17  
Confluent cell cultures were starved by incubation for 3  h in DMEM  
without FBS at 37°C to reduce the interference by growth factors present  
in the serum. These cells were then incubated with ANG II (10-7 M) for 
2 h and /or (SNP) (0.5  mM) for 24  h at 37°C. After incubation, cells 
were washed twice with ice-cold homogenization buffer. The cells were 
homogenized in a homogenization potter. The homogenate was for 
immunoblotting experiments.
The involvement of PPAR-γ in the signaling pathway of NO in the 
VSMCs of the aorta was examined by the use of the specific inhibitors 
GW9962 (20 µmol/L) and (30μmol/L) for PPAR-γ.
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Effect of treatments with SNP and GW9962 on Giα-3:
VSMCs (Figure 3) and A-10 cells (Figure 4) were treated with SNP (500 µM)  
and/or GW9962 (20 µM and 30 µM). Western blotting experiments 
showed that these treatments uniformly decreased the levels of expression  
ofGiα-3 in VSMCs and A-10 cells compared to control cells or those 
treated with the vehicle DMSO. Treatment with SNP decreased the levels  
of Giα-3 by 40.33% in VSMCs and 55.67% in A-10 cells. Treatment 

Figure 1: Protein expression levels of Giα-2 in VSMCs. The cells were treated 
with SNP (0.5 mM) and / or GW9962 (20 µM and 30 µM). The values are the 
results of 3 independent experiments. ***= significant p<0.001

Figure 3: Protein expression levels of Giα-3 in VSMCs. The cells were treated 
with SNP (0.5 mM) and / or GW9962 (20 µM and 30 µM). The values are the 
results of 3 independent experiments. ***= significant p<0.001

Figure 4: Protein expression levels of Giα-3 in A-10 Cells. The cells were 
treated with SNP (0.5 mM) and / or GW9962 (20 µM and 30 µM). The values 
are the results of 3 independent experiments. ***= significant p<0.001

Figure 2: Protein expression levels of Giα-2 in A-10 Cells. The cells were 
treated with SNP (0.5 mM) and / or GW9962 (20 µM and 30 µM). The values 
are the results of 3 independent experiments. ***= significant p<0.001

individual and combination treatments with the NO donor and the 

PPAR-γ antagonist. Treatment with SNP/ GW9962 (20 µM) decreased 

the levels of Giα-2 to 52% in VSMCs and 54.3% in A-10 cells, while  

treatment with SNP/ GW9962 (30 µM) decreased the levels of Giα-2 to 

49.33% in VSMCs and 52.66% in A-10 cells.
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donor and the PPAR-γ antagonist. Treatment with SNP/ GW9962 (20 µM)  
decreased the levels of Giα-2 to 52% in VSMCs and 54% in A-10 cells, 
while treatment with SNP/ GW9962 (30 µM) decreased the levels of 
Giα-2 to 52.66% in VSMCs and 50.66% in A-10 cells.

Effect of treatments with SNP and GW9962 on the ratio of pPPAR-γ  
(ser-112)/PPAR-γ:
VSMCs (Figure 5) and A-10 cells (Figure 6) were treated with SNP  
(500μM) and/or GW9962 (20 µM and 30 µM). Western blotting experi-
ments showed that treatment with SNP did not affect the ratio of phos-
phorylated/phosphorylated PPAR-γ in comparison to the control group 
and the group treated with the vehicle DMSO, and hence had no effect 
on the PPAR-γactivation. In contrast, treatment with PPAR-γ antagonist 
GW9962 at 20 µM and 30 µM dose dependently increased the ratio of 
phosphorylated/phosphorylated PPAR-γ compared to CTL and DMSO 
treated groups, thus effectively inactivating PPAR-γ. Treatment with 
GW9962 at 20 µM and 30 µM increased phosphorylation ratios by 37.66% 
and 70.33% respectively in VSMCs and 36.33% and 78.33% respectively 
in A-10 cells. It is important to mention that treatments with SNP and 
GW9962 at both concentrations had no significant effect with respect to  
treatments with the antagonist alone. Treatment with SNP/ GW9962  
(20 µM) increased phosphorylation ratios by 32.33% in VSMCs and 43 % 
in A-10 cells, while treatment with SNP/ GW9962 (30 µM) increased the 
ration by 67.66% in VSMCs and by 75.33% in A-10 cells.

MTS Cell Proliferation Test
The results of the proliferation test in VSMCs (Figure 7) showed that 
treatment of quiescent cells with the vehicle DMSO had no effect 
on cellular proliferation as the absorbance levels at 490 nm remained 
unchanged. Treatment with ANG II increased the proliferation rate  
of VSMCs by 26.9%. Treatment with SNP and/or GW9962 following  
stimulation of quiescent cells with ANG IIfor 3 hours showed that these 
treatments alone or in combination decreased the proliferation levels 
of VSMCs. Treatment with ANGII/SNP decreased the proliferation of 
VSMCs by 21.57%. No significant difference in proliferation rates was  
shown between treatments with GW9962 at both concentrations. Treatment  
with ANGII/GW9962 (20 µM) decreased the proliferation of VSMCs by  
23.33%. Treatment with ANGII/GW9962 (30 µM) decreased the proli-
feration of VSMCs by 27.54%. Treatment with ANGII/SNP/GW9962  
(20 µM) decreased the proliferation of VSMCs by 29.03%. Treatment 
with ANGII/SNP/GW9962 (30 µM) decreased the proliferation of 
VSMCs by 34.29%.

Figure 5: Ratio of p-PPAR-γ (ser 112)/PPAR-γ as an indicator of PPAR-γ inacti-
vation in VSMCs. The cells were treated with SNP (0.5 mM) and / or GW9962 
(20 µM and 30 µM). The values are the results of 3 independent experiments. 
**= significant p<0.01, ***= significant p<0.001

Figure 7:  Proliferation rates of VSMCs. Cells were pre-treated with ANG II  
(10-7 M) for 3 hrs followed by SNP (0.5 mM) and/or GW9962 (20 µM and 30 µM)  
for 24hrs. The values are the results of 3 independent experiments. I20= GW9962 
20 µM, I30= GW9962 30 µM, **= significant p<0.05, ***= significant p<0.001

Figure 6: Ratio of p-PPAR-γ (ser 112)/PPAR-γ expression levels as an indica-
tor of PPAR-γ inactivation following treatments in A-10 Cells. The cells were 
treated with SNP (0.5 mM) and / or GW9962 (20 µM and 30 µM). The values 
are the results of 3 independent experiments. **= significant p<0.01, ***= 
significant p<0.001

with GW9962 (20 µM and 30 µM) decreased the levels of  expression 
of Giα-2 by 47.66% and 46% respectively in VSMCs and 55.33% and  
57.0% in A-10 cells. The decreased levels of showed no statistical signi-
ficance between individual and combination treatments with the NO 
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following inhibition of PPAR-γ is independent of NO or if PPAR-γ is 
located upstream of NO signaling pathway. These results are in agree 
ment with those of the western blot experiments which showed that  
treatment with SNP had no effect on the ratio of pPPAR-γ/PPAR-γ  
compared to untreated controls. Also, the treatment with SNP in combina-
tion with GW9962 showed no difference in the proliferation assay when  
compared to treatments with GW9962 alone. In this regard, several 
studies have reported an interaction between NO and PPAR-γ. In this 
regard, Cipola et al highlighted the effectiveness and clinical relevance 
of PPAR-γ in improving vascular function. Female Sprague Dawley rats  
were treated with L-NAME or L-NAME and PPAR-γ activator rosigli-
tazone. The hypertrophic remodeling and the enhanced myogenic activity  
caused by L-NAME were reversed by rosiglitazone without having any 
effect on blood pressure.12 These studies may indicate that the signaling  
pathway of PPAR-γ may be independent. Finally, an inhibition of  
Gi-protein levels by siRNA or shRNA or activity by pertussis toxin will 
be needed to better understand the role of Gi-protein in this signaling 
mechanism.13

CONCLUSION
In conclusion, this research project gave new insights into the role of NO 
and PPAR-γ in the proliferation of VSMCs and the potential relationship 
with Gi-protein levels. 
Although our results were not able establish a conclusive evidence as  
to the interaction between NO and PPAR-γ, but they showed that both 
NO donors and inhibition of PPAR-γ in non-pathological conditions 
regulate the decrease of VSMCs proliferation, and hence may serve as 
potential therapeutic targets in the prevention of the onset of vascular 
diseases. 
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becco’s modified Eagle’s medium; FBS: Fetal Bovine  serum; GAPDH: 
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blast growth factor
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DISCUSSION
The aim was to establish that the anti-proliferative role of NO in VSMCs 
is mediated by decreased Giα while investigating the possible role of 
PPAR-γ as a modulator of these effects.  Results show that treatments of  
both VSMCs and A-10 cells with SNP and GW9962 decreased the  
levels of Giα-2 and Giα-3. The relationship between NO donor treatments 
and Gi-protein levels and function was investigated by Bassil et al. with 
results comparable to those reported in our experiments.10 The observed  
decrease in Giα-2 and Giα-3 levels along with results from the proliferation  
test showing that treatments with SNP and GW9962 had no effect on cell 
proliferation compared to the control group can lead to the conclusion that  
the anti-proliferative effect of both NO and PPAR-γ inhibitor in VSMCs 
is probably due to the observed decrease in Gi expression. It has been 
already proven that the decrease in Gi protein expression and its related 
decrease in activity have anti-proliferative effects in the vasculature.7-9 
This suggestion has to be further elucidated with treatment by RNA 
interference or with the inhibitor pertussis toxin.10

When comparing the proliferation rates of the control group to those 
treated with SNP and GW9962 and the vehicle DMSO without prior 
stimulation with ANG II points out that these treatments are not cyto-
toxic since the proliferative rates remained unchanged across these 
groups. Further validation made by cell counting using the trypan blue 
exclusion technique, indicated that cellular viability was not affected by  
these treatments. Proliferation test data showed that treatment of  
quiescent cells with ANG II markedly increased the proliferation of both 
VSMCs. These observations are compatible to previous reports which 
confirmed the proliferative role of ANG II in the vasculature.7,21

Interestingly MTS test results showed that both treatments with SNP and 
GW9962 after stimulation with ANG II decreased cell proliferation rates 
compared to control groups, and that the combination of SNP/GW9962 
had no significant change in proliferation rates compared to individual 
treatments. These observations have led us to conclude that PPAR-γ may 
not mediate the anti-proliferative effect of NO in VSMCs. 
It is important to mention that the anti-proliferative effects of PPAR-γ  
activation are observed following prolonged treatments with potent  
proliferative and agents such as ANGII,23 PDGF, or bFGF and establishment  
of an advanced proliferative state or after induction of vascular injury.22 
The proliferative effect of PPAR-γ ligands in the vasculature was reported  
by Xiao et.al that showed that treatment of VSMCs with the PPAR-γ  
activator was able to significantly increase proliferation in VSMCs. 
A similar effect was observed in VSMCs that over expressed PPAR-γ.  
In contrast, GW9662 treatment and silencing PPAR-γ were able to 
noticeably inhibit VSMCs proliferation.24 The involvement of PPAR γ in 
the promotion of angiogenesis has been widely reported. Biscetti et al.  
demonstrated that selective activation of PPAR γ leads to tube forma-
tion in endothelial/VSMCs co-culture system. This effect was shown to 
be mediated via a VEGF dependent mechanism, and reversed following 
treatment with a PPAR-γ inhibitor.25

The interaction between PPARs and G-proteins has not been extensively 
studied in the literature.26 A study by Knowles et al. showed that niacin 
which possesses an anti-lipolytic effect involving inhibitory G-protein 
signaling induces PPAR-γ expression and transcriptional activation in  
macrophages via HM74 and HM74a induction of prostaglandin synthesis 
pathways.15 
Another important finding in our study was that the anti-proliferative 
effects of SNP and GW9962 individual treatments showed no important  
significant effect compared to co-incubation with both treatments. These 
observations may indicate that the anti-proliferative effect of NO is not 
mediated by PPAR-γ. However, these findings were not able to provide 
a conclusive answer as to whether the anti-proliferative effect observed 
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GRAPHICAL ABSTRACT SUMMARY

• This research project gave new insights into the role of NO and PPAR-γ in the 
proliferation of VSMCs and the potential relationship with Gi-protein levels. 

• This research showed that both NO donors and inhibition of PPAR-γ in non-
pathological conditions regulate the decrease of VSMCs proliferation.
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